Given an integer array nums, return the length of the longest strictly increasing subsequence.
A subsequence is a sequence that can be derived from an array by deleting some or no elements without changing the order of the remaining elements. For example, [3,6,2,7] is a subsequence of the array [0,3,1,6,2,2,7].
Example 1:
Input: nums = [10,9,2,5,3,7,101,18]
Output: 4
Explanation: The longest increasing subsequence is [2,3,7,101], therefore the length is 4.
Example 2:
Input: nums = [0,1,0,3,2,3]
Output: 4
Example 3:
Input: nums = [7,7,7,7,7,7,7]
Output: 1
Constraints:
1 <= nums.length <= 2500
-104 <= nums[i] <= 104
Follow up: Can you come up with an algorithm that runs in O(n log(n)) time complexity?
解题要点:
DP - Time O(n^2)
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length == 0) return 0;
int[] dp = new int[nums.length+1];
Arrays.fill(dp,1);
int res = 1;
for(int i=1; i<nums.length; i++){
for(int j=0; j<i; j++){
if(nums[i] > nums[j]){
dp[i] = Math.max(dp[i], dp[j]+1);
res = Math.max(res,dp[i]);
}
}
}
return res;
}
}
Binary Search - Time O(nlog(n))
class Solution {
public int lengthOfLIS(int[] nums) {
if(nums.length == 0) return 0;
List<Integer> res = new ArrayList<>();
res.add(nums[0]);
for(int i=1; i<nums.length; i++){
if(nums[i] > res.get(res.size()-1)){
res.add(nums[i]);
} else{
int ind = binary(res,0,res.size()-1,nums[i]);
res.set(ind,nums[i]);
}
}
return res.size();
}
public int binary(List<Integer> res, int l, int h, int target){
while(l <= h){
int m = l + (h-l)/2;
if(res.get(m) < target) l = m+1;
else h = m-1;
}
return l;
}
}