509. Fibonacci Number
The Fibonacci numbers, commonly denoted F(n)
form a sequence, called the Fibonacci sequence, such that each number is the sum of the two preceding ones, starting from 0
and 1
. That is,
F(0) = 0, F(1) = 1
F(N) = F(N - 1) + F(N - 2), for N > 1.
Given N
, calculate F(N)
.
Example 1:
Input: 2
Output: 1
Explanation: F(2) = F(1) + F(0) = 1 + 0 = 1.
Example 2:
Input: 3
Output: 2
Explanation: F(3) = F(2) + F(1) = 1 + 1 = 2.
Example 3:
Input: 4
Output: 3
Explanation: F(4) = F(3) + F(2) = 2 + 1 = 3.
解题要点:
创建一个新的数组串,先声明0和1位上的数分别为,0跟1。然后使用dp的方法,轮流加进数组后续数位上的数字,返回index为N的数。
class Solution {
public int fib(int N) {
if(N == 0) return 0;
int[] f = new int[N + 1];
f[0] = 0;
f[1] = 1;
for(int i = 2; i <= N; i++){
f[i] = f[i-1] + f[i-2];
}
return f[N];
}
}
方法二:
根据Fibonacci定理,当前数等于前两位数相加,先声明两个初始值0和1,用for loop循环加入到当前数,for loop结束后返回它。
class Solution {
public int fib(int N) {
if(N == 0) return 0;
int first = 0;
int second = 1;
int thrid = 1;
for(int i = 2; i <= N; i++){
thrid = first + second;
first = second;
second = thrid;
}
return thrid;
}
}
Last updated
Was this helpful?